KATHMANDU UNIVERSITY SCHOOL OF
MANAGEMENT

BBIS
COM 102 : 3 Credit Hours

4. Operators in C
09/01/2022

Outline

4.1 Arithmetic Operators
4.2 Assignment Operators
4.3 Logical Operators

4.4 Bitwise Operators

4.5 Unary Operator

4.6 Conditional Operator

Operators

» An operatoris a symbol that tells the compiler to perform specific mathematical or logical
functions.

» These C operators join individual constants and variables to form expressions.

» C language isrich in built-in operators and provides the following types of operators:
» Arithmetic Operators

Increment and Decrement Operators

Assignment Operators

Logical Operators

Relational Operators

Conditional Operator

Bitwise Operators

vV vV v v v v .Y

Special Operators

Operator

-

%

Arithmetic Operators

» Arithmetic Operators are used to performing mathematical calculations like addition (+),
subtraction (-), multiplication (*), division (/) and modulus (%).

Description

adds two operands

subtract second operands from first
multiply two operand

divide numerator by denominator

remainder of division

Operators Meaning Example | Result
t Addition 4+2 6
- Subtraction 4- 2
’ Multiplication 4% \
Division 4/2 2
Modulus operator to get
o remainder in integer division %2 l

Arithmetic Operators: Example

#include<stdio.h>

int main(){

inta =40, b =20;

int add,sub,mul,div,mod;

add = a+b;

sub = a-b;

mul = a*b;

div = a/b;

mod = a%b;

printff("Addition of a, b is : %d\ n", add);
printf("Subtraction of a, b is : %d\n", sub);
printf("Multiplication of a, b is : %d\n", mul);
printf("Division of a, b is : %d\n", div);
printf("Modulus of a, b is : %d\n", mod);
return O;

}

Formart specitier

The format specifiers are used in C for input

and output purposes.

Using this concept the compiler can
understand that what type of data is in a
variable during taking input using the

Integer overflows occur when the result of an arithmetic

operation is a value, that is too large to fit in the available
storage space.

scanf() function and printing using printf()

function.
Here is a list of format specifiers.

DATA TYPE
int
unsigned int
short
unsigned short
long
unsigned long
long long

unsigned long long

SIZE (IN BYTES)

4

4

RANGE
-2147483648 to 2147483647
0 to 4294967295
-32768 to 32767
0 to 65535
-9223372036854775808 to 9223372036854775807
0 to 18446744073709551615
-9223372036854775808 to 9223372036854775807

0 to 18446744073709551615

FORMAT SPECIFIER

%d

%u

%hd

%hu

%ld

%lu

%lld

%llu

#include <stdio.h>
main() {
charch ="B};
printf("%c\n", ch); //printing character data

//print decimal or integer data with d and |

intx=45,y=290;
printf("%d\n", x);
printf("%i\n", y);

float f = 12.67;
printf("%f\n", f); //print float value

printf("%e\n", f); //print in scientific notation

inta=67;
printf("%o\n", a); //print in octal format

printf("%x\n", a); //print in hex format

char str[] = "Hello World";

printf("%s\n", str);

printf("%20s\n", str); //shift to the right 20 characters including the string

printf("%-20s\n", str); //left align

printf("%20.5s\n", str); //shift to the right 20 characters including the string, and print string up to 5 character
(

printf("%-20.5s\n", str); //left align and print string up to 5 character

Increment and Decrement Operators

Increment and Decrement Operators are useful operators generally used to minimize the
calculation.

Increment ++ increases the value by 1 whereas decrement -- decreases the value by 1.

These two operators are unary operators, meaning they only operate on a single operand.
» o+txissameasx=x+1orx+=1
» o-Xxissameasx=x-1orx-=1

Increment and decrement operators can be used only with variables. They can't be used
with constants or expressions.
intx=1,y=1;
» ++x;// valid
» ++5;//invalid - increment operator operating on a constant value

» ++(x+y); // invalid - increment operating on an expression

Prefix and Postfix Increment and Decrement

Increment/Decrement operators are of two #include<stdio.h>

fypes: int main() {
1. Prefix increment/decrement operator.

int varl =5, var2 = 5;
// 5is displayed

// Then, varl is increased to 6.

2. Postfix increment/decrement operator.

printf("%d\n", varl++);
// var2is increased to 6
// Then, it is displayed.
printf("%d\n", ++var2);

return O;

}

"
‘/ Increment J

|

[Prefix Increment]

(Postﬁx lncremcnt]
\

a++

Increment a by 1
then use the new
value of a in the
expression.

Use the current
value of a in the
expression, then
increment a by 1.

l Decrement I
=

\

N\

!

--a

~

(Preﬁx Decremenj {Postfix DecrementJ

—ed

[

Decrement a by 1
then use the new
value of a in the
expression.

Use the current
value of a in the
expression, then
decrement a by 1.

Prefix Increment/decrement

The prefix increment/decrement operator immediately increases or decreases
the current value of the variable. This value is then used in the expression. Let's
take an example:

Y = ++X;

Here first, the current value of x is incremented by 1. The new value of x is then
assigned foy.

Similarly, in the statement:
y ==X

the current value of x is decremented by 1. The new value of x is then assigned o
V.

The following program demonstrates prefix increment/decrement operator in
action:

#include<stdio.h>
UERT@)
{
=12, y = 1;
printf("Initial value of x = %d\n", x);

printf("Initial value of y = %d\n\n", y);

Yy = ++X;
printf("After incrementing by 1: x = %d\n", x);
printf("y = %d\n\n", y);

y = --X;
printf("After decrementing %d\n", x);
printf("y = %d\n\n", y);

return 0O;

}

Postfix Increment/Decrement operator

The postfix increment/decrement operator causes the current value of the variable 1o be
used in the expression, then the value is incremented or decremented. For example:

y = X++;

Here first, the current value of x is assigned to y then x is incremented.

Similarly, in the statement:

Yy = X

the current value of x is assigned to y then x is decremented.

#include<stdio.h>
main()
{
X =12, y = 1;
printf("Initial value of x
printf("Initial value of y

%d\n", x);
%d\n\n", y);

y = X++;
printf("After incrementing by 1: X
printf("y = %d\n\n", y);

%d\n", x);

y = X--3
printf("After decrementing by 1: x
printf("y = %d\n\n", y);

%d\n", x);

return 0;

}

Assignment Operators

» An assignment operator is used for assigning a value to a variable. The most common
assignment operator is =

Operator Description Example

= assigns values from right side operands to left side operand a=b

+= adds right operand to the left operand and assign the result to a+=b is same as
left a=a+b

-= subtracts right operand from the left operand and assign the a-=b is same as
result to left operand a=a-b

= mutiply left operand with the right operand and assign the a=b is same as
result to left operand a=a*b

/= divides left operand with the right operand and assign the result a/=b is same as
to left operand a=a/b

%= calculate modulus using two operands and assign the result to a%=Db is same as

left operand a=a%b

Assignment operators: Example

#include <stdio.h>

{

a =5, ¢c;

C = a;
printf("
C += a;
printf("
cC -= a;
printf("
c *= a;
printf("
c /= a;
printf("
C %= a;
printf("c
return 9;

}

Relational Operators

A relational operator checks the relationship between
two operands.

If the relation is true, it returnsl; if the relation is false, it
returns value 0.

Relational operators are used in decision making and
loops.

A=5,B=6;
A==B;
Al=B;

Is equal to

Is not equal to

Greater than

Less than

Greater than or equal to

Less than or equal to

Relational Operators: Example

#include <stdio.h>
main()

{

m=40, n=20;
if (m == n)
{

printf("m and n are equal");

}

else

{

printf("m and n are not equal");

}

return 0;

}

Classroom Assignment

» WAP to find a larger number among two numbers input by the user (use
relational operator for the comparison).

» Hinfs:
> A=6
» B=7
» If (A>B) {
» Pri.... Alis greater.
> }
» Else {bis greater

Logical Operators

» C provides three logical operators when we test more than one condition to make

decisions.
» These are: && (meaning logical AND), | | (meaning logical OR) and | (meaning logical
NOT).
&& and | | are binary operators while |is a unary
Operator Meaning operator.

AND

OR

NOT

Binary operators act upon a two operands to
produce a new value.

AND (&&) operator

The logical AND operator (&&) returns the boolean value frue if both operands are true and
returns false otherwise.

Syntax: operand1 && operand?
Truth table of AND operator is:

Operandl Operand2 Result
True True True
True False False
False True False

False False False

OR (ll) operator

The logical OR operator (| |) returns the boolean value true if either or both operands is true
and returns false otherwise.

Syntax: operand1 | | operand?2

Truth Table of OR operator is: Operandl Operanaz esun
True True True
True False True
False True True

False False False

NOT (!) operator

» The logical NOT operator(!) negates the value of the condition.

If the value of the condition is false then it gives the result true. If the value of the
condition is frue then it gives the result false.

» Syntax: loperand

» The truth table of logical NOT operator is:
Condition Result

False True

True False

Logical Operator: Example

#include <stdio.h>

main() {

m=40,n=20;

a=20,p=30;
if (m>n && m !=0) {
printf("&& Operator : Both conditions are true\n"); }
if (a>p || p!=20) {
printf("|| Operator : Only one condition is true\n"); }
if (!(m>n && m !1=0)) {
printf("! Operator : Both conditions are true\n"); }
else {
printf("! Operator : Both conditions are true. " \

"But, status is inverted as false\n"); }

return 0;

}

Conditional Operator

The Conditional Operator in C, also called a Ternary operator, is one of the
Operators, which used in the decision-making process.

#include <stdio.h>
main()
{
age;
printf("Enter your age");
scanf("%d",&age);
(age>=18)? (printf("eligible for voting")) : (printf("not eligible for voting"));

return 0;

}

Syntax:
(Text Expression)? statementl : statement2;

Bitwise Operators

» The bitwise operators are the operators used to perform the operations on the
data at the bit-level.

» When we perform the bitwise operations, then it is also known as bit-level
programming.

» |t consists of two digits, either O or 1.

» It is mainly used in numerical computations to make the calculations faster.
> 1
» 0000 0000 0000 0001
> 256 1286432168421

1/17/2022

Bitwise Operators in C

Meaning of Operator

& Bitwise AND Operator

| Bitwise OR Operator

N\ Bitwise exclusive OR Operator

~ Bitwise NOT Operator (Unary Operator)
<< Left Shift Operator

>> Right Shift Operator

Bitwise AND Operator

» Bitwise AND operator is denoted by the single ampersand sign (&). Two
infeger operands are written on both sides of the (&) operator.

» If the corresponding bits of both the operands are 1, then the output of the
bitwise AND operation is 1; otherwise, the output would be 0.

-y x&y

<

— O — O
— O O O

Bitwise AND Operator

We have two variables a and b.
Int a =6;
Int b=4;
The binary representation of the above two variables are given below:

01 00

When we apply the bitwise AND operation in the above two variables,
l.e., a&b, the output would be:

Result = 0100

Example:

Checking for Odd and Even Numbers using Bitwise AND (&) Checking if a number is a power of 2

#include <stdio.h>

#include <stdlib.h> #include <stdio.h>
#include <stdlib.h>

int main(){ int main(){
e int a=32;
f”TX 3 if(a >0 & (a & (a - 1)) == 0)f
if(1(x&T) N orintf("%d is a power of 2",);
printf("x is even"); }
Velse { return EXIT_SUCCESS;

printf("x is odd!"); }

}
}

Bitwise OR operator

» The bitwise OR operator is represented by a single vertical sign (|).

» Two integer operands are written on both sides of the (|) symbol. If the bit value of any of
the operand is 1, then the output would be 1, otherwise 0.

.y xly

<

- O — O
||_|O

Bitwise OR Operator

We consider two variables,

a=23;

b=10;

The binary representation of the above two variables would be:

a=00010T111

b =0000 1010

mher]rk:/ve apply the bitwise OR operator in the above two variables, i.e., a|b,
en the

output would be:
Result =0001 1111

Bitwise exclusive OR operator

» The A operator is bitwise XOR. The usual bitwise OR operator is inclusive OR.

» XORis true only if exactly one of the two bits is frue.

» Two operands are written on both sides of the exclusive OR operator. If the corresponding
bit of any of the operand is 1 then the output would be 1, otherwise O.

-y xry

..OO|
— O — O j=
o — — O

Bitwise Exclusive OR

We consider two variables a and b,

a=12;

b=10;

The binary representation of the above two variables would be:
a =0000 1100

b =0000 1010

When we apply the bitwise exclusive OR operator in the above two variables
(aAb), then

the result would be:
Result = 0000 0110

1.

WAP to swap two numbers without using another variable.

// C code to swap using XOR
#include <stdio.h>
int main()

{
int x = 10, y = 5;

// Code to swap 'x' (1010) and 'y' (0101)

X =X ~vy; // x now becomes 15 (1111)

y =x ~y; // y becomes 10 (1010)

X =X "™y; // x becomes 5 (0101)

printf("After Swapping: x = %d, y = %d", X, y);

return 9;

Complement(~), Left Shift (<<}, Right

Shift (>>)

1. The << (left shift) in C or C++ takes two numbers, left shifts the bits of the first operand,
the second operand decides the number of places to shift.

2. The >> (right shift) in C or C++ takes two numbers, right shifts the bits of the first
operand, the second operand decides the number of places to shift.

3. The ~ (bitwise NOT) in C or C++ takes one number and inverts all bits of it.

Shift (>>)

// C Program to demonstrate use of
bitwise operators

#include <stdio.h>

int main()

{

// a = 5(00000101), b = 9(00001001)
unsigned chara =5, b = 9;

// The result is 00000001
printf("a = %d, b = %d\n", a, b);
printf("a&b = %d\n", a & b);

// The result is 00001101
printf("alb = %d\n", a | b);

Complement(~), Left Shift (<<}, Right

// The result is 00001100
printf("a”b = %d\n", a ~ b);

// The result is 11111010
printf("~a = %d\n", a = ~a);

// The result is 00010010
printf("b<<1l = %d\n", b << 1);

// The result is 00000100
printf("b>>1 = %d\n", b >> 1);

return 0;

Special Operators

Operator
sizeof()

&

Description

Returns the size of a variable.

Returns the address of a vanable.

Fointer to a vanable.

Conditional Expression.

Example
sizeof(a), where a is integer, will return 4.

&a; returns the actual address of the
varahle.

*a

If Condition is true 7 then value X :
othernvise value Y

Operators Precedence in C

» Operator precedence determines the grouping of terms in an expression and decides how an expression
is evaluated.

» Certain operators have higher precedence than others;

» for example, the multiplication operator has a higher precedence than the addition operator.

Category
Postiix
Unary

Multiplicative
Additive
Shift
Relational
Equality
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND

Logical OR

Operator

O0-= ++--

+ -~ ++ - - (type)* & sizeof

* I %

=< =

= sz = E=

Associativity
Left to right
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right

Left to right

ANy querieseee

