
KATHMANDU UNIVERSITY SCHOOL OF

MANAGEMENT

BBIS

COM 102 : 3 Credit Hours

1

4. Operators in C
09/01/2022

Outline

4.1 Arithmetic Operators

4.2 Assignment Operators

4.3 Logical Operators

4.4 Bitwise Operators

4.5 Unary Operator

4.6 Conditional Operator

2

Operators

 An operator is a symbol that tells the compiler to perform specific mathematical or logical

functions.

 These C operators join individual constants and variables to form expressions.

 C language is rich in built-in operators and provides the following types of operators:

 Arithmetic Operators

 Increment and Decrement Operators

 Assignment Operators

 Logical Operators

 Relational Operators

 Conditional Operator

 Bitwise Operators

 Special Operators

3

Arithmetic Operators

 Arithmetic Operators are used to performing mathematical calculations like addition (+),

subtraction (-), multiplication (*), division (/) and modulus (%).

4

#include<stdio.h>

int main(){

int a = 40, b = 20;

int add,sub,mul,div,mod;

add = a+b;

sub = a-b;

mul = a*b;

div = a/b;

mod = a%b;

printf("Addition of a, b is : %d\n", add);

printf("Subtraction of a, b is : %d\n", sub);

printf("Multiplication of a, b is : %d\n", mul);

printf("Division of a, b is : %d\n", div);

printf("Modulus of a, b is : %d\n", mod);

return 0;

}

Arithmetic Operators: Example
5

Format specifier
6

• The format specifiers are used in C for input

and output purposes.

• Using this concept the compiler can

understand that what type of data is in a

variable during taking input using the

scanf() function and printing using printf()

function.

• Here is a list of format specifiers.

Integer overflows occur when the result of an arithmetic
operation is a value, that is too large to fit in the available
storage space.

#include <stdio.h>

main() {

char ch = 'B';

printf("%c\n", ch); //printing character data

//print decimal or integer data with d and I

int x = 45, y = 90;

printf("%d\n", x);

printf("%i\n", y);

float f = 12.67;

printf("%f\n", f); //print float value

printf("%e\n", f); //print in scientific notation

int a = 67;

printf("%o\n", a); //print in octal format

printf("%x\n", a); //print in hex format

char str[] = "Hello World";

printf("%s\n", str);

printf("%20s\n", str); //shift to the right 20 characters including the string

printf("%-20s\n", str); //left align

printf("%20.5s\n", str); //shift to the right 20 characters including the string, and print string up to 5 character

printf("%-20.5s\n", str); //left align and print string up to 5 character

}

Increment and Decrement Operators

 Increment and Decrement Operators are useful operators generally used to minimize the

calculation.

 Increment ++ increases the value by 1 whereas decrement -- decreases the value by 1.

 These two operators are unary operators, meaning they only operate on a single operand.

 ○ ++x is same as x = x + 1 or x += 1

 ○ --x is same as x = x - 1 or x -= 1

 Increment and decrement operators can be used only with variables. They can't be used

with constants or expressions.

int x = 1, y = 1;

 ++x; // valid

 ++5; // invalid - increment operator operating on a constant value

 ++(x+y); // invalid - increment operating on an expression

8

Prefix and Postfix Increment and Decrement

Increment/Decrement operators are of two

types:

1. Prefix increment/decrement operator.

2. Postfix increment/decrement operator.

#include<stdio.h>

int main() {

int var1 = 5, var2 = 5;

// 5 is displayed

// Then, var1 is increased to 6.

printf("%d\n", var1++);

// var2 is increased to 6

// Then, it is displayed.

printf("%d\n", ++var2);

return 0;

}

9

…

10

Prefix increment/decrement

The prefix increment/decrement operator immediately increases or decreases
the current value of the variable. This value is then used in the expression. Let's
take an example:

y = ++x;

Here first, the current value of x is incremented by 1. The new value of x is then
assigned to y.

Similarly, in the statement:

y = --x;

the current value of x is decremented by 1. The new value of x is then assigned to
y.

The following program demonstrates prefix increment/decrement operator in
action:

11

…

#include<stdio.h>
int main()
{
int x = 12, y = 1;
printf("Initial value of x = %d\n", x); // print the initial value of x
printf("Initial value of y = %d\n\n", y); // print the initial value of y

y = ++x; // increment the value of x by 1 then assign this new value to y
printf("After incrementing by 1: x = %d\n", x);
printf("y = %d\n\n", y);

y = --x; // decrement the value of x by 1 then assign this new value to y
printf("After decrementing by 1: x = %d\n", x);
printf("y = %d\n\n", y);

// Signal to operating system everything works fine
return 0;
}

12

Postfix Increment/Decrement operator

The postfix increment/decrement operator causes the current value of the variable to be

used in the expression, then the value is incremented or decremented. For example:

y = x++;

Here first, the current value of x is assigned to y then x is incremented.

Similarly, in the statement:

y = x--;

the current value of x is assigned to y then x is decremented.

13

#include<stdio.h>
int main()
{
int x = 12, y = 1;
printf("Initial value of x = %d\n", x); // print the initial value of x
printf("Initial value of y = %d\n\n", y); // print the initial value of y

y = x++; // use the current value of x then increment it by 1
printf("After incrementing by 1: x = %d\n", x);
printf("y = %d\n\n", y);

y = x--; // use the current value of x then decrement it by 1
printf("After decrementing by 1: x = %d\n", x);
printf("y = %d\n\n", y);

// Signal to operating system everything works fine
return 0;
}

14

Assignment Operators

 An assignment operator is used for assigning a value to a variable. The most common

assignment operator is =

15

Assignment operators: Example

#include <stdio.h>
int main()
{
int a = 5, c;
// Working of assignment operators
c = a; // c is 5
printf("c = %d\n", c);
c += a; // c is 10
printf("c = %d\n", c);
c -= a; // c is 5
printf("c = %d\n", c);
c *= a; // c is 25
printf("c = %d\n", c);
c /= a; // c is 5
printf("c = %d\n", c);
c %= a; // c = 0
printf("c = %d\n", c);
return 0;
}

16

Relational Operators

 A relational operator checks the relationship between

two operands.

 If the relation is true, it returns1; if the relation is false, it

returns value 0.

 Relational operators are used in decision making and

loops.

 A = 5 , B = 6;

 A==B;

 A!=B;

17

Relational Operators: Example

#include <stdio.h>
int main()
{
int m=40, n=20;
if (m == n)
{
printf("m and n are equal");
}
else
{
printf("m and n are not equal");
}
return 0;
}

18

Classroom Assignment

 WAP to find a larger number among two numbers input by the user (use

relational operator for the comparison).

 Hints:

 A =6

 B=7

 If (A>B) {

 Pri…. A is greater.

 }

 Else { b is greater

19

Logical Operators

 C provides three logical operators when we test more than one condition to make

decisions.

 These are: && (meaning logical AND), || (meaning logical OR) and ! (meaning logical

NOT).

&& and | | are binary operators while ! is a unary

operator.

Binary operators act upon a two operands to

produce a new value.

20

AND (&&) operator

 The logical AND operator (&&) returns the boolean value true if both operands are true and

returns false otherwise.

 Syntax: operand1 && operand2

 Truth table of AND operator is:

21

OR (II) operator

 The logical OR operator (||) returns the boolean value true if either or both operands is true

and returns false otherwise.

 Syntax: operand1 || operand2

 Truth Table of OR operator is:

22

NOT (!) operator

 The logical NOT operator(!) negates the value of the condition.

 If the value of the condition is false then it gives the result true. If the value of the

condition is true then it gives the result false.

 Syntax: !operand

 The truth table of logical NOT operator is:

23

Logical Operator: Example

#include <stdio.h>
int main() {
int m=40,n=20;
int a=20,p=30;
if (m>n && m !=0) {
printf("&& Operator : Both conditions are true\n"); }
if (a>p || p!=20) {
printf("|| Operator : Only one condition is true\n"); }
if (!(m>n && m !=0)) {
printf("! Operator : Both conditions are true\n"); }
else {
printf("! Operator : Both conditions are true. " \

"But, status is inverted as false\n"); }
return 0;
}

24

Conditional Operator

#include <stdio.h>
int main()
{
int age; // variable declaration
printf("Enter your age");
scanf("%d",&age); // taking user input for age variable
(age>=18)? (printf("eligible for voting")) : (printf("not eligible for voting")); // conditional
operator
return 0;
}

Syntax:
(Text Expression)? statement1 : statement2;

25

The Conditional Operator in C, also called a Ternary operator, is one of the
Operators, which used in the decision-making process.

Bitwise Operators

 The bitwise operators are the operators used to perform the operations on the
data at the bit-level.

 When we perform the bitwise operations, then it is also known as bit-level
programming.

 It consists of two digits, either 0 or 1.

 It is mainly used in numerical computations to make the calculations faster.

 1

 0000 0000 0000 0001

 256 128 64 32 16 8 4 2 1

26

1/17/2022

Bitwise Operators in C

27

Operator Meaning of Operator

& Bitwise AND Operator

| Bitwise OR Operator

^ Bitwise exclusive OR Operator

~ Bitwise NOT Operator (Unary Operator)

<< Left Shift Operator

>> Right Shift Operator

Bitwise AND Operator

 Bitwise AND operator is denoted by the single ampersand sign (&). Two

integer operands are written on both sides of the (&) operator.

 If the corresponding bits of both the operands are 1, then the output of the

bitwise AND operation is 1; otherwise, the output would be 0.

28

x y x&y

0 0 0

0 1 0

1 0 0

1 1 1

Bitwise AND Operator

We have two variables a and b.

Int a =6;

Int b=4;

The binary representation of the above two variables are given below:

………….8 4 2 1

a = 0110

b = 0100

01 00

When we apply the bitwise AND operation in the above two variables,
i.e., a&b, the output would be:

Result = 0100

29

Example:

#include <stdio.h>

#include <stdlib.h>

int main(){

int x=3;

if(!(x&1)){

printf("x is even");

} else {

printf("x is odd!");

}

}

30

Checking if a number is a power of 2

#include <stdio.h>

#include <stdlib.h>

int main(){

int a=32;

if(a > 0 && (a & (a - 1)) == 0){

printf("%d is a power of 2", a);

}

return EXIT_SUCCESS;

}

Checking for Odd and Even Numbers using Bitwise AND (&)

Bitwise OR operator

 The bitwise OR operator is represented by a single vertical sign (|).

 Two integer operands are written on both sides of the (|) symbol. If the bit value of any of

the operand is 1, then the output would be 1, otherwise 0.

31

x y x|y

0 0 0

0 1 1

1 0 1

1 1 1

Bitwise OR Operator

We consider two variables,

a = 23;

b = 10;

The binary representation of the above two variables would be:

a = 0001 0111

b = 0000 1010

When we apply the bitwise OR operator in the above two variables, i.e., a|b ,
then the

output would be:

Result = 0001 1111

32

Bitwise exclusive OR operator

 The ^ operator is bitwise XOR. The usual bitwise OR operator is inclusive OR.

 XOR is true only if exactly one of the two bits is true.

 Two operands are written on both sides of the exclusive OR operator. If the corresponding

bit of any of the operand is 1 then the output would be 1, otherwise 0.

33

x y x^y

0 0 0

0 1 1

1 0 1

1 1 0

Bitwise Exclusive OR

We consider two variables a and b,

a = 12;

b = 10;

The binary representation of the above two variables would be:

a = 0000 1100

b = 0000 1010

When we apply the bitwise exclusive OR operator in the above two variables

(a^b), then

the result would be:

Result = 0000 0110

34

Example:

// C code to swap using XOR
#include <stdio.h>
int main()
{

int x = 10, y = 5;

// Code to swap 'x' (1010) and 'y' (0101)
x = x ^ y; // x now becomes 15 (1111)
y = x ^ y; // y becomes 10 (1010)
x = x ^ y; // x becomes 5 (0101)

printf("After Swapping: x = %d, y = %d", x, y);

return 0;
}

35

1. WAP to swap two numbers without using another variable.

Complement(~), Left Shift (<<), Right

Shift (>>)

1. The << (left shift) in C or C++ takes two numbers, left shifts the bits of the first operand,
the second operand decides the number of places to shift.

2. The >> (right shift) in C or C++ takes two numbers, right shifts the bits of the first
operand, the second operand decides the number of places to shift.

3. The ~ (bitwise NOT) in C or C++ takes one number and inverts all bits of it.

36

Complement(~), Left Shift (<<), Right

Shift (>>)

37

// C Program to demonstrate use of
bitwise operators
#include <stdio.h>
int main()
{

// a = 5(00000101), b = 9(00001001)
unsigned char a = 5, b = 9;

// The result is 00000001
printf("a = %d, b = %d\n", a, b);
printf("a&b = %d\n", a & b);

// The result is 00001101
printf("a|b = %d\n", a | b);

// The result is 00001100
printf("a^b = %d\n", a ^ b);

// The result is 11111010
printf("~a = %d\n", a = ~a);

// The result is 00010010
printf("b<<1 = %d\n", b << 1);

// The result is 00000100
printf("b>>1 = %d\n", b >> 1);

return 0;

}

Special Operators

38

Operators Precedence in C

 Operator precedence determines the grouping of terms in an expression and decides how an expression

is evaluated.

 Certain operators have higher precedence than others;

 for example, the multiplication operator has a higher precedence than the addition operator.

39

40

Any queries???

41

